lunes, 18 de junio de 2012

Comprende las leyes de la electricidad

Hoy empezaremos a hablar de tres temas muy importantes en primero abordaremos el primero de ellos que tiene por nombre:

Electricidad:
electrostática y
electrodinámica.
¿Que es la electricidad?
La electricidad es una propiedad física que se manifiesta por la atracción o repulsión entre las partes de la materia. Esta propiedad se origina en la existencia de electrones (con carga positiva) o protones (con carga negativa).

¿Que es la electroestatica?
 La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas. La electrostática estudia las fuerzas eléctricas producidas por distribuciones de cargas a través de conceptos tales como el campo electrostático y el potencial eléctrico, y de leyes físicas como la ley de Coulomb.

¿Que es la elaectrodinamica?
 Estudia los campos eléctricos -relacionados con los rayos, la electricidad de la línea, la estática que crispa el cabello cuando el peine o cepillo está cargado eléctricamente- y magnéticos -los imanes que se pegan a la heladera, etc.-
Electrodinámica se compone de ELECTRO y DINÁMICA. Dinámica significa movimiento, es decir que la electrodinámica estudia el comportamiento de los campos eléctricos y magnéticos en movimiento.



domingo, 17 de junio de 2012

Ley de Coulumb

la ley de Coulomb fue creada por el físico ingles Charles A. Coulumb.Mediante una balanza de torsión, Coulomb encontró que la fuerza de atracción o repulsión entre dos cargas puntuales (cuerpos cargados cuyas dimensiones son despreciables comparadas con la distancia r que las separa) es inversamente proporcional al cuadrado de la distancia que las separa.

El valor de la constante de proporcionalidad depende de las unidades en las que se exprese F, q, q’ y r. En el Sistema Internacional de Unidades de Medida vale 9·109 Nm2/C2.
Obsérvese que la ley de Coulomb tiene la misma forma funcional que la ly de la gravitacion universal.
 



En esta imagen obserbamos como dos fuerzas positivas las dos no se atraen y ejercen una fuerza de repulsión con una distancia.

Pondremos un ejemplo de lo que vimos anteriormente.
Dos objetos con cargas de +q1 y -q2 Coulomb están separados a una distancia de dos metros. Determina el valor de la fuerza de atracción que existen entre ellos.(Debemos utilizar la ley de coulumb)
 
F= (8.99x 10⁹ Nm₂/c₂) (1c)(1c)/ (2m)₂ = 2.24x 10⁹N

sábado, 16 de junio de 2012

campo electrico

El Campo Eléctrico,  E , en un punto P, se define como la fuerza eléctrica  F, que actúa sobre una carga de prueba positiva  +q0,  situada en dicho punto. Es decir,    
    a
, y se representa con líneas tangentes a la dirección del campo. La dirección y el sentido de las líneas del campo eléctrico en un punto, se obtiene observando el efecto de la carga sobre la carga prueba colocada en ese punto.
En las figuras 4 y 5 se presentan las líneas de campo eléctrico debido a cargas puntuales +q y -q, las cuales se alejan de la carga positiva y se dirigen a la negativa.   
a 
En esta imagen observamos dos tipos de 
campo electrico que exixten que son positivos
     y negativosa.










Acontinuacion les presento los diferentes tipos de campos electricos:








POTENCIAL ELECTRICO

  • 1. Energía Potencial Eléctrica y Potencial Eléctrico E q 0 A B d = 14.6 •10-15m 235U nucleos +n Ba Kr (92 protones) (56 p) (36 p) 1 11/06/2009 15:15 FLORENCIO PINELA- ESPOL
  • 2. Conservación de la Energía de una partícula 1 2  Energía Cinética (K) K  mv Siempre positiva 2  no-relativista Puede ser positiva o  Energía Potential (U) U ( x, y, z ) negativa  Determinado por la ley de la fuerza y configuración  Para Fuerzas Conservativas: K+U es constante  La energía total es siempre constante  Ejemplos de fuerzas conservativas  gravedad; energía potencial gravitacional  resortes; energía elástica (ley de Hooke): U(x) =½ kx2  eléctrica; energía potencial eléctrica (hoy!)  Ejemplos de fuerzas no-conservativas (calor)  fricción  Medios viscosos (velocidad terminal) 2 FLORENCIO PINELA- ESPOL 11/06/2009 15:15
  • 3. Ejemplo: La Fuerza Gravitacional es conservativa (y de atracción): recordando! • Considere un cometa en una órbita elíptica U(r) pt 1 pt 2 0 U(r1) Mayor energía • En el punto 1, la potencial partícula tiene mucha GMm energía potencial, pero U (r ) r poca energía cinética U(r2) Menor energía • En el punto 2, la partícula tiene potencial poca energía potencial, pero mucha energía cinética La energía total = K + U 11 es constante! 3.


RESISTENCIA ELECTRICA Y LEY DE OHM

La resistencia eléctrica es la relación existente entre la diferencia de potencial eléctrico al que se somete a un medio o componente y la intensidad de la corriente que lo atraviesa:
R = V/I (véase la ley de Ohm)
La resistencia eléctrica se suele representar con la letra R, y su unidad en el SI es el ohmio, definido como la resistencia de un conductor en el cual la corriente es de un amperio cuando la diferencia de potencial entre sus extremos es de un voltio. El inverso de la resistencia se denomina conductancia eléctrica y su unidad es el siemens.
De la ecuación anterior se desprende que cuanta menor sea la intensidad de la corriente, mayor será la resistencia, por ello se dice que la resistencia eléctrica es un medida de la dificultad que opone un conductor al paso de la corriente a su través.
Para una gran variedad de materiales y condiciones, la resistencia eléctrica no depende de la cantidad de corriente o la diferencia de potencial aplicada por lo que ambas son proporcionales, siendo la resistencia de un conductor función de las características del material y la temperatura a la que éste se encuentra:
R = l ρ / s
donde:
R = Resistencia
l = Longitud
s = Sección
ρ = Resisistividad (Característica para cada material y temperatura.
 
Aqui les dejo un link de una pagina, es un ejercicio y obserben como se hace y el precedimiento. chaooo :)
http://www.youtube.com/watch?v=3SOcuRW53C8




viernes, 15 de junio de 2012

Relacionas la electricidad con el magnetismo.

MAGNETISMO

Magnetismo es la fuerza de atracción que ejercen determinados cuerpos, como los imanes, en una región del espacio denominada campo magnético. Existen cuerpos que por su composición poseen propiedades magnéticas (como la piedra magnetita) y se denominan imanes naturales. Pero también hay otros, conocidos como imanes artificiales, que adquieren esas propiedades por frotación con otro imán, o bien al recibir una corriente eléctrica (como ocurre con ciertos alambres enrollados en forma de espiral). Los imanes poseen dos polos, uno negativo y otro positivo. Si se enfrentan dos cuerpos imantados, los polos iguales se repelen y los opuestos se atraen. El magnetismo puede transmitirse de un objeto a otro, fenómeno conocido como imantación. Además, en ciertos casos, los imanes son capaces de inducir corrientes eléctricas.
 
En esta figura obserbamos el campo magnetico que tiene la tierra y el sol.

En la figuara bemos que si los polos no son iguales estos se ban a atraer, y si lo son no se atraen..











TIPOS DE IMAN 
Los imanes pueden ser: naturales o artificales, o bien, permanentes o temporales.
Un imán natural es un mineral con propiedades magnéticas.
Un imán artificial es un cuerpo de material ferromagnético al que se ha comunicado la propiedad del magnetismo
Un imán permanente está fabricado en acero imanado
Un imán temporal, pierde sus propiedades una vez que cesa la causa que provoca el magnetismo.
Un electroimán es una bobina (en el caso mínimo, una espira) por la cual circula corriente eléctrica.


Estos son imanes naturales y artifiales.



 


CAMPO MAGNETICO
El campo magnético es la esfera de influencia de un imán. La forma del campo magnético fue estudiada por Michael Faraday, quien espolvoreó limaduras de hierro sobre un vidrio colocado encima de un imán. Esas limaduras se disponen en hileras que irradian desde cada uno de los polos del imán. Esas hileras se denominan líneas de fuerza e indican la dirección de las fuerzas combinadas de los dos polos.





ELECTROMAGNETISMO

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la mecánica cuántica.
El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.

En la siguiente imagen les mostrare las diferentes ecuaciones del electromagnetismo.












  







EL SOLENOIDE


Un solenoide es definido como una bobina de forma cilíndrica que cuenta con un hilo de material conductor enrollada sobre si a fin de que, con el paso de la corriente eléctrica, se genere un intenso campo eléctrico. Cuando este campo magnético aparece comienza a operar como un imán.

La función principal de un solenoide es activar una válvula que lleva su mismo nombre, la válvula solenoide. Esta válvula opera de acuerdo a los pulsos eléctricos de su apertura y de su cierre.
Por lo general, este tipo de dispositivo se puede programar según ciertos horarios y dentro de sus usos más comunes se encuentran los sistemas de regulación hidráulica y neumática. Dentro de este último campo, es frecuente utilizarlo para permitir el flujo o realizar la detención de corrientes de alto amperaje en los motores de arranque. Debido a su funcionamiento, es posible encontrar solenoides en varias partes de un motor, no sólo en el motor de arranque.

 



















jueves, 14 de junio de 2012

LEY DE FARADAY



La Ley de Faraday establece que la corriente inducida en un circuito es directamente proporcional a la rapidez con que cambia el flujo magnético que lo atraviesa
La inducción electromagnética fue descubierta casi simultáneamente y de forma independiente por Michael Faraday y Joseph Henry en 1830. La inducción electromagnética es el principio sobre el que se basa el funcionamiento del generador eléctrico, el transformador y muchos otros dispositivos.
Supongamos que se coloca un conductor eléctrico en forma de circuito en una región en la que hay un campo magnético. Si el flujo F a través del circuito varía con el tiempo, se puede observar una corriente en el circuito (mientras el flujo está variando). Midiendo la fem inducida se encuentra que depende de la rapidez de variación del flujo del campo magnético con el tiempo. 

  

La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:1
En resumen: "La cantidad de sustancia que se oxida o se reduce en los electrodos de una cuba electrolítica es proporcional a la cantidad de electricidad depositada"
\oint_C \vec{E} \cdot \vec{dl} = - \ { d \over dt }   \int_S   \vec{B} \cdot \vec{dA}
Donde \vec{E} es el campo eléctrico, d\vec{l} es el elemento infinitesimal del contorno C, \vec{B} es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de \vec{dA} están dadas por la regla de la mano derecha.
La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.
Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:
\nabla \times \vec{E} = -\frac{\partial \vec{B}} {\partial t}
Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.
En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:
\,V_\varepsilon = -N{d \Phi \over d t}
Donde Vε es el voltaje inducido y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección voltaje inducido(el signo negativo en la fórmula) se debe a la ley de Lenz.



LEY DE LENZ

Los estudios sobre inducción electromagnética, realizados por Michael Faraday nos indican que en un conductor que se mueva cortando las líneas de fuerza de un campo magnético se produciría una fuerza electromotríz (FEM) inducida y si se tratase de un circuito cerrado ‘se’ produciría una corriente inducida. Lo mismo sucedería si el flujo magnético que atraviesa al conductor es variable.
La Ley de Lenz nos dice que las fuerzas electromotrices o las corrientes inducidas serán de un sentido tal que se opongan a la variación del flujo magnético que las produjo. Esta ley es una consecuencia del principio de conservación de la energía.
La polaridad de una FEM inducida es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.
El flujo de un campo magnético uniforme a través de un circuito plano viene dado por:
donde:
Φ = Flujo magnético. La unidad en el S.I. es el weber (Wb). B = Inducción magnética. La unidad en el S.I. es el tesla (T). S = Superficie del conductor. α = Ángulo que forman el conductor y la dirección del campo.
Si el conductor está en movimiento el valor del flujo será:
En este caso la Ley de Faraday afirma que la FEM inducida en cada instante tiene por valor:
El signo (-) de la expresión anterior indica que la FEM inducida se opone a la variación del flujo que la produce. Este signo corresponde a la ley de Lenz.
Esta ley se llama así en honor del físico germano-báltico Heinrich Lenz, quien la formuló en el año 1834. 




GENERADOR Y MOTOR ELECTRICO

Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dínamo, y a una máquina que convierte la energía eléctrica en mecánica se le denomina motor.
Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de un circuito de conducción fijo cuya intensidad puede variar, se establece o se induce una corriente en el conductor. El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampère. Si una corriente pasaba a través de un conductor dentro de un campo magnético, éste ejercía una fuerza mecánica sobre el conductor.
La máquina dinamoeléctrica más sencilla es la dinamo de disco desarrollada por Faraday, que consiste en un disco de cobre que se monta de tal forma que la parte del disco que se encuentra entre el centro y el borde quede situada entre los polos de un imán de herradura. Cuando el disco gira, se induce una corriente entre el centro del disco y su borde debido a la acción del campo del imán. El disco puede fabricarse para funcionar como un motor mediante la aplicación de un voltaje entre el borde y el centro del disco, lo que hace que el disco gire gracias a la fuerza producida por la reacción magnética.
El campo magnético de un imán permanente es lo suficientemente fuerte como para hacer funcionar una sola dinamo pequeña o motor. Por ello, los electroimanes se emplean en máquinas grandes. Tanto los motores como los generadores tienen dos unidades básicas: el campo magnético, que es el electroimán con sus bobinas, y la armadura, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan en bobinas los cables conductores.








TRANSFORMADOR ELECTRICO

El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, por medio de interacción electromagnética. Está constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente y por lo general enrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo.